Sexual reproduction

Sexual reproduction is characterised by processes that pass a combination of genetic material to offspring, resulting in diversity. The main two processes are: meiosis, involving the halving of the number of chromosomes; and fertilization, involving the fusion of two gametes and the restoration of the original number of chromosomes. During meiosis, the chromosomes of each pair usually cross over to achieve genetic recombination.

The evolution of sex is a major puzzle. The first fossilized evidence of sexually reproducing organisms is from eukaryotes of the Stenian period, about 1.2 to 1 billion years ago. Sexual reproduction is the primary method of reproduction for the vast majority of visible organisms, including almost all animals and plants. Bacterial conjugation, the transfer of DNA between two bacteria, is often mistakenly confused with sexual reproduction, because the mechanics are similar.

A major question is why sexual reproduction persists when parthenogenesis appears in some ways to be a superior form of reproduction. Contemporary evolutionary thought proposes some explanations. It may be due to selection pressure on the clade itself-the ability for a population to radiate more rapidly due to a changing environment through sexual recombination than parthenogenesis allows. Alternatively, sexual reproduction may allow for the "ratcheting" of evolutionary speed as one clade competes with another for a limited resource.

Reproduction in plants

In flowering plants, the anther produces male gametophytes, the sperm is produced in pollen grains, which attach to the stigma on top of a carpel, in which the female gametophytes (inside ovules) are located. After the pollen tube grows through the carpel's style, the sperm cell nuclei from the pollen grain migrate into the ovule to fertilize the egg cell and endosperm nuclei within the female gametophyte in a process termed double fertilization. The resulting zygote develops into an embryo, while the triploid endosperm (one sperm cell plus two female cells) and female tissues of the ovule give rise to the surrounding tissues in the developing seed. The ovary, which produced the female gametophyte(s), then grows into a fruit, which surrounds the seed(s). Plants may either self-pollinate or cross-pollinate. Nonflowering plants like ferns, moss and liverworts use other means of sexual reproduction.

Ferns typically produce large diploid sporophytes with rhizomes, roots and leaves; and on fertile leaves called sporangium, spores are produced. The spores are released and germinate to produce smaller gametophytes that are typically heart shaped, small and green in color. The gametophytes or thallus, produce both motile sperm in the antheridia and egg cells in separate archegonia. After rains or when dew deposits a film of water, the motile sperm are splashed away from the antheridia, which are normally produce on the top side of the thallus, and swim in the film of water to the antheridia and fertilize the egg. To promote out crossing or cross fertilization the sperm are released before the egg is receptive of sperm, making it more likely that the sperm will fertilize the eggs of another thallus. A zygote is formed after fertilization, which grows into a new sporophytic plant. The condition of having separate sporephyte and gametophyte plants is call alternation of generations. Other plants with similar reproductive means include the Psilotum, Lycopodium, Selaginella and Equisetum.

Reproduction in mammals

There are three kind of mammals; Monotremes, Placentals and Marsupials, all with internal fertilisation yet do still differ from each other. In placental mammals, offspring are born as juveniles: complete animals with the sex organs present although not reproductively functinal. After several months or years, the sex organs develop further to maturity and the animal becomes sexually mature. Most female mammals are only fertile during certain periods and during those times, they are said to be "in heat". At this point, the animal is ready to mate. Individual male and female mammals meet and carry out copulation. For most mammals, males and females exchange sexual partners throughout their adult lives.

The mammalian male

The male reproductive system contains two main divisions: the penis, and the testes, the latter of which is where sperm are produced. In humans, both of these organs are outside the abdominal cavity, but they can be primarily housed within the abdomen in other animals (for instance, in dogs, the penis is internal except when mating). Having the testes outside the abdomen best facilitates temperature regulation of the sperm, which require specific temperatures to survive. Sperm are the smaller of the two gametes and are generally very short-lived, requiring males to produce them continuously from the time of sexual maturity until death. Prior to ejaculation the produced sperm are stored in the seminal vesicle, a small gland that is located just behind the bladder.A sperm cell is motile and swims via chemotaxis, using its flagellum to propel itself towards the ovum.

The mammalian female

The female reproductive system likewise contains two main divisions: the vagina and uterus, which act as the receptacle for the sperm, and the ovaries, which produce the female's ova. All of these parts are always internal. The vagina is attached to the uterus through the cervix, while the uterus is attached to the ovaries via the Fallopian tubes. At certain intervals, the ovaries release an ovum, which passes through the fallopian tube into the uterus.

If, in this transit, it meets with sperm, the sperm penetrate and merge with the egg, fertilizing it. The fertilization usually occurs in the oviducts, but can happen in the uterus itself. The zygote then implants itself in the wall of the uterus, where it begins the processes of embryogenesis and morphogenesis. When developed enough to survive outside the womb, the cervix dilates and contractions of the uterus propel the fetus through the birth canal, which is the vagina.

The ova, which are the female sex cells, are much larger than the sperm and are normally formed with in the ovaries of the fetus before its birth. They are mostly fixed in location with in the ovary until their transit to the uterus, and contain nutrients for the later zygote and embryo. Over a regular interval, in response to hormonal signals, a process of oogenesis matures one ovum which is released and sent down the Fallopian tube. If not fertilized, this egg is flushed out of the system through menstruation in humans and other great apes and reabsorbed in other mammals in the estrus cycle.


Gestation, called pregnancy in humans, is the period of time during which the fetus develops, dividing via mitosis inside the female. During this time, the fetus receives all of its nutrition and oxygenated blood from the female, filtered through the placenta, which is attached to the fetus' abdomen via an umbilical cord. This drain of nutrients can be quite taxing on the female, who is required to ingest slightly higher levels of calories. In addition, certain vitamins and other nutrients are required in greater quantities than normal, often creating abnormal eating habits. The length of gestation, called the gestation period, varies greatly from species to species; it is 40 weeks in humans, 56-60 in giraffes and 16 days in hamsters.


Once the fetus is sufficiently developed, chemical signals start the process of birth, which begins with contractions of the uterus and the dilation of the cervix. The fetus then descends to the cervix, where it is pushed out into the vagina, and eventually out of the female. The newborn, which is called an infant in humans, should typically begin respiration on its own shortly after birth. Not long after, the placenta is passed as well. Most mammals eat this, as it is a good source of protein and other vital nutrients needed for caring for the young. The end of the umbilical cord attached to the young's abdomen eventually falls off on its own.


Monotremes, only five species of which exist, all from Australia and New Guinea, lay eggs. They have one opening for excretion and reproduction called the cloaca. They hold the eggs internally for several weeks, providing nutrients, and then lay them and cover them like birds. After less than two weeks the young hatches and crawls into its mother's pouch, much like marsupials, where it nurses for several weeks as it grows.


Marsupials reproduce in essentially the same manner, though their young are born at a far earlier stage of development than other mammals. After birth, marsupial joeys crawl into their mother's pouch and attach to a teat, where they receive nourishment and finish developing into self-sufficient animals.


The vast majority of fish species lay eggs that are then fertilized by the male,BONY FISHES - Reproduction some species lay their eggs on a substrate like a rock or on plants, while others scatter their eggs and the eggs are fertilized as they drift or sink in the water column. Some fish species use internal fertilization and then disperse the developing eggs or give birth to live offspring. Fishes that have live-bearing offspring include the Guppy and Mollies or Poecilia. Fishes that give birth to live young can be ovoviviparous, were the eggs are fertilized within the female and the eggs simply hatch within the female body, or they can be viviparous, were the female supplies nourishment to the internally growing offspring. Some fish are hermaphrodites, where a single fish is both male and female and can produce eggs and sperm. In hermaphroditic fish, some are male and female at the same time while in other fish they are serially hermaphroditic; starting as one sex and changing to the other. In at least one hermaphroditic species, self-fertilization occurs when the eggs and sperm are released together. Internal self-fertilization may occur in some other species. One fish species does not need sexually reproduction to produce offspring; Poecilia formosa can use parthenogenesis for reproduction, were unfertilized eggs develop into embryos that produce female offspring.

See also

  1. Pang, K. "Certificate Biology: New Mastering Basic Concepts", Hong Kong, 2004
  2. Journal of Biology of Reproduction, accessed in August 2005.

Index: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

This article is based on "Sexual reproduction" from the free encyclopedia Wikipedia ( It is licensed under the terms of the GNU Free Documentation Licencse. In the Wikipedia you can find a list of the authors by visiting the following address: